
Evaluating the Performance of the U-Net CNN for Road Segmentation in
Satellite Images

Luca Delabarre, Thibaud Banderet, Mateo Echeverry Hoyos
Machine Learning, EPFL Lausanne, Switzerland

Abstract—In this lab report, we explore the use of a U-
Net model to segment roads in satellite images. The U-Net
model is a convolutional neural network (CNN) that has
been shown to be effective for image segmentation tasks. Due
to the reduced dataset, we use various data augmentation
techniques, which help to improve the performance of the
model. The augmented dataset is then used to train the U-
Net model. We evaluate the performance of the model using
several metrics, including accuracy and F1 score. The results
show that the final U-Net model used achieves an F1 score
of 94.5% on the test set, demonstrating its effectiveness at
segmenting roads in satellite images. Our results confirm
that the U-Net model is a promising approach for solving
this challenge.

I. INTRODUCTION

Road segmentation is an essential task in the field of
computer vision, with numerous practical applications in
areas such as autonomous vehicle navigation and mapping
services. Autonomous vehicles, also known as self-driving
cars, have the potential to revolutionize the way we
travel and significantly improve transportation efficiency.
Accurate road segmentation is a critical component of
autonomous vehicle navigation, as it allows the vehicle to
correctly identify and follow roads in real-time. Inaccurate
road segmentation can lead to costly accidents and under-
mine the safety and reliability of autonomous vehicles.

In addition to autonomous vehicles, accurate road seg-
mentation can also improve the accuracy of mapping
services, such as Google Maps. By correctly identifying
roads in satellite images, these services can more accu-
rately display road networks and provide more accurate
directions to users. This can be especially important in
areas where the road network is constantly changing, such
as in developing countries.

In this lab report, we investigate the use of a con-
volutional neural network (CNN) called the U-Net for
the task of road segmentation in satellite images. The
U-Net model is a well-established approach for image
segmentation tasks and has previously been shown to
be effective in a variety of contexts. To improve the
performance of the U-Net model on our sparse dataset
consisting of 100 hundred images of size 400x400, we
apply data augmentation techniques to the dataset. These
techniques involve applying various transformations to the
training data to artificially increase the size of the dataset
and improve the generalizability of the model.

After training and evaluating the models on the test
set, we find that our modified U-Net model achieves an
F1 score of 94.5%. We also perform a detailed error
analysis to understand where the model is making mistakes
and identify potential areas for improvement. Overall, our
results suggest that the U-Net architecture is a promising
approach for road segmentation in satellite images, which
has the potential to significantly improve the accuracy of
autonomous vehicles and mapping services.

II. METHODS

We use a convolutional network in order to work on
this problem since our inputs and outputs are images. We

use the U-Net as a general architecture as it is designed
for image segmentation [1]. We tried various variations of
the original U-Net architecture by altering the number of
filters on the layers, changing activation functions, dropout
rates and adding batch normalization.

A. Preprocessing

Before training our model, we preprocess our data in
the following way.

1) Data augmentation: We start by augmenting our
data of 100 images which is far from enough to train a
neural network.
We use the following transformations : rotations of mul-
tiples of 90 degrees, random rotations, flipping, adding
gaussian or salt and pepper noise. In the case of rotations,
we fill the images with black pixels so they conserve their
original dimensions. Our best working set of augmentation
consists of:

• Rotations of 10 random angles around a random point
chosen between 45% and 55% of the side length of
the image on both axis

• Flipping horizontally and vertically
• Adding gaussian noise of two different variances (50

and 100)
• Salt and pepper with a low corruption ratio (1% and

2%)
2) Other training set: Another way to grow our training

set is by adding images from other training sets found
online, namely from [2]. This set is far from clean (has
a lot of images with white parts) and does not have quite
the same distribution as the base training set we are given.
We hand-picked the best images, but ended up not using
them as their distribution was too different from our set.

3) From images to patches: Every image we have
is 400x400 pixels. We cut it into smaller patches with
padding if necessary. This gives us more training data
without trading anything in return as long as the patches
are large enough for the model to find roads easily.

B. Models

We tried some variations on the U-Net architecture:
• ”Short U-Net” taken from [3]
• ”Multi U-Net” taken from [4]
• ”Large U-Net” taken from [5]

The Multi U-Net model uses multiple U-Net modules to
improve the performance of the model. This is achieved by
concatenating the outputs of the individual U-Net modules
before passing them through the final layers of the model.

The Short U-Net uses fewer layers and filters in the
contracting and expansive paths. This makes the model
faster to train and less prone to overfitting, at the expense
of some loss of performance.

The Large U-Net model uses more layers and filters
in the contracting and expansive paths. This makes the
model more powerful and capable of achieving higher
performance, but also makes it slower to train.

On top of using these models as basis we also attempt
to tweak them in multiple ways, for example by adding
dropout layers or changing their rate, adding or removing
layers or changing activation functions. The inputs of the
model are preprocessed images with their values divided
by 255. (since RGB values go to 255) This is a way of
standardizing our input. One could argue that standardiz-
ing the usual way is better, our reasoning is that the first
layers of the neural network work as input transformation
layers so it is not needed. Each model is trained with the
same exact input shape and type for comparing reasons.

C. Loss functions

Loss functions are an important part of machine learning
models and are used to measure how well a model is
performing. In the context of image segmentation, the
two commonly used loss functions are the binary cross
entropy loss and the soft dice loss, which are the ones we
experimented with.

1) Binary cross entropy: The binary cross entropy loss
is a measure of the difference between the predicted output
and the true output for binary classification tasks. It is
defined as:

Loss = −(y log(p) + (1− y) log(1− p))

Where y is the true output and p is the predicted output.
The binary cross entropy loss is easy to calculate and is
commonly used for image segmentation tasks. However,
it can be sensitive to imbalanced datasets and may not be
the best choice when the class distribution is uneven.

2) Soft dice loss: The soft dice loss is another com-
monly used loss function for image segmentation tasks. It
is defined as:

Loss = 2∗|U∩V |
|U |+|V |

Where |U ∩ V | represents the common elements between
sets U and V, and —U— represents the number of
elements in set U (and likewise for set V). The soft
dice loss is less sensitive to imbalanced datasets than the
binary cross entropy loss and is often used when the class
distribution is uneven. However, it can be more difficult to
optimize and may not always converge as quickly as the
binary cross entropy loss.

D. Hyperparameters

Here we elaborate on certain hyperparameters we tried
varying and optimizing.

1) Training set size: As explained in II-A, our given
training set is too small to train our models effectivaly so
we have to add more data to it. An important trade-off to
keep in mind is that generating a lot of new images from
the same data might lead to overfitting to the distribution
of there images, which is why we tried using another set
as explained in II-A2. We end up settling on augmenting
our data from 100 to 1200, and then 2000 images without
adding new original data, as this gave us the best results
without over-fitting on the training set. We opted out of
using the new data as its distribution was too far from our
original data and lead to worse performance overall.
Since our training set is still quite small we also decide to
take a smaller validation set for this model (10% of our
input set) in order to keep a large amount of training data.

2) Patch size: Patch size is an interesting hyperparam-
eter, intuitively the best patch size would be the smallest
one where it is still easy to tell a road apart from a roof
of a building for example. We manually checked some
patch sizes and decided that patches of 80x80 or more

give enough context to differentiate a road. As our models
take as inputs multiples of 32x32, we settled on 96x96 for
most of our tests. Results show that bigger patch sizes did
not lead to better performance.

3) Submission threshold: After training the model, we
still need to go from our patch size to the required
one (16x16) and give a single value for each of these
patches, which we do by averaging the patch image and
thresholding that average to either output 0 or 1. Intuitively
a threshold of 0.5 sounds like the best option but because
of our lack in training data, a lower threshold such as 0.2
tends to yield better results as our model does not seem so
confident in his predictions (road pixels do not have values
much higher than non road ones). This hyperparameter is
important to maximize as it is crucial in getting a higher
F1 score, the right ratio of false positive and false negative
needs to be met.

4) Others: Other hyperparameters were found mostly
using gried search. Dropout rates were tested between
0.5 and 0.8. Leaky-ReLu parameter was tested between
0.1 and 0.3. We tried two optimizers, namely SGD and
ADAM. ADAM with a learning rate of 10−4 performed
better than SGD despite being a bit slower on our ma-
chines. Batch size was chosen as 16 or 64 depending
on the amount of available memory on our GPU at the
moment of training.

III. RESULTS
A. Performance

We now present different results of different variations
of our model along with the best score we achieved. The
main ranking statistic we use is the F1 score, which is a
measure of a model’s performance that takes into account
both precision and recall. A high F1 score indicates that
the model is able to accurately classify a large number
of positive examples (i.e. roads) while also minimizing
the number of false positives (i.e. non-road pixels that are
classified as roads). Coincidentally the F1 score ranking
gives the same ordering as ordering by accuracy on the
test set (the one on AICrowd).

Figure 1: Accuracies of our various models, all using the same hyperparameters :
training set augmented to 1200 images, patches of 96x96, submission threshold of
0.2, batch size of 16 and ADAM optimizer

When comparing the models we described in II-B, our
highest scoring model turns out to be the large U-Net, with
an F1 score of 0.874 and an accuracy of 0.933, which is
the highest score we have gotten overall. The other models
still have high scores but tend to cap at around 0.84 F1
score. They also do not manage well a higher amount of
data augmentation as they overfit rather rapidly. This result
was obtained with the 2000 augmented images, a dropout
rate of 0.5 and ReLU activation function.
All of those models used the binary cross entropy loss
function, since it had better results than the soft dice loss
function. In the Short U-Net, when training the model
with the soft dice loss function the model had an F1 score
of 0.818, giving worse results than with the binary cross
entropy loss.

Another interesting parameter we tweaked was the sub-
mission threshold. This graph shows how much influence
it has over a certain trained model.

Figure 2: Accuracy and F1 score of Short U-Net with added dropout depending
on the submission threshold. The hyperparameters are : training set augmented to
1200 images, patches of 96x96, batch size of 16 and ADAM optimizer

As the graph shows, picking the right submission thresh-
old yields drastic improvements in both F1 score and
accuracy on the test set, namely a 0.2 increase from
the worst to the best in the graph. This threshold was
maximized on every model using a manual grid search on
our test set.
The last graph of results we showcase is about variations

of the data augmentation for the model. There is a lot of
potential variations to try here but due to the amount of
submissions possible we limit ourselves to a few that we
intuitively think can improve the score.

Figure 3: AICrowd and training accuracies of Short U-Net with different types of
data augmentation : classic has 6 rotations, horizontal and vertical flips, gaussian
noise with variances 50 and 200 and salt and pepper noise with rate 0.01875.
Rotations removes the gaussian noise with variance 50 to replace it with another
random rotation. Corruption lowers the corruptions rates to variances 10 and 50
and rate 0.01.

The best result turns out to be the first augmentation
we tried. After looking at some predictions using this
augmentation we noticed our model struggled with roads
that were not vertical or horizontal, which brought the
idea of adding more rotations. Another worry was about
the corruption rates being too high which is why we tried
lowering them too. Adding more rotations allowed the
large U-Net to perform better. Changing the corruption
rates did not change much to our results.

In the following graph we can observe the improvement
of the large U-Net model over time.

Figure 4: AICrowd and training accuracies of large U-Net in different iterations

The x-axis represents the number of the iteration. At it-
eration 1, the model was trained using only the 100 images
from the training patches of size 96x96 without applying
any data augmentation. At iteration 2, we attempted to add
images from a new dataset but this worsened the model’s
performance. At iteration 3, we applied data augmentation
techniques to the dataset. At iteration 4, we changed the

threshold from 0.1 to 0.2, further improving the model’s
performance. Finally, at iteration 5, we began monitoring
the F1 score instead of the validation loss. These results
show that the large U-Net model’s performance improved
as the team applied various techniques

IV. DISCUSSION

We now discuss the results we achieved and the choices
we made during this project. To begin with the models.

A. Models

Although they were compared using the same hyper-
parameters, the comparison is not fully objective as each
model has its own (potentially different) set of optimal
hyperparameters. We decided to focus on the model that
performed better overall and was complex enough to
reduce overfitting. This model turned out to be the Large
U-Net which takes much longer to train and slows down
our work a lot, but allowed us to feed it more augmented
data and get a better result.
We attempted to modify it in multiple ways:

• Add layers to see whether our model is large enough
for the data we feed it

• Modify the activation functions from ReLu to
LeakyReLu with different parameters

• Add dropouts
Sadly none of these changes led to a better score. In theory
this proves that our model is large enough for our data,
does not need a fancier activation function than ReLU,
and that it does not overfit the training set.

B. Data augmentation

As mentioned in III-A, there is a lot to do with data
augmentation, pick how much we want to/can augment
our data, pick which augmentations we want to use and
how many of each along with the parameters for each
augmentation. We did not have the time to extensively
explore all of these choices, but we tried slight variations
in each of them.
We varied the amount of augmentation in order to get a
vague understanding of whether we were augmenting too
much or too little, which led to picking 20 augmentations
for each image as our optimal amount for the large model,
and 12 for the smaller models.
An intuitive way of picking augmentations is to balance
them evenly and have an even amount of all of them.
Which was our starting point. Once this was tested we
look at predictions of the augmented data to see which
augmentation is the hardest to predict and try adding
more of this augmentation at the cost of removing some
other ones, thus breaking the balance. As seen in the
results this did not improve the scores, which suggests that
keeping a good balance is more important than focusing
on augmentations that are hard to train.
As for the parameters of each augmentation, most of the
choices were also done out of instinct and were later
confirmed to be right by comparison to others :

• Random rotations were at angles between 0 and 90
as this augmentation is done to help with non vertical
or horizontal roads.

• Gaussian noise variance was brought quite high as
long as the image still looked recognizable by us
(200), another lower variance version was added to
ease the training process.

• Salt and pepper corruption rate follows the same idea
of using a high rate that still makes the image easily
recognizable to the human eye.

We then tried randomizing the rotations further by ran-
domizing the center of rotation by a small amount. We
also tried lowering the variances and corruption rates since
although they look recognizable to the human eye, their
values seem quite extreme for a machine learning model.
However as the resulting graph in III-A shows, these
changes did not appear to be beneficial, which as said
above strengthens our first instinct.

C. Patch size

The last main hyperparameter we will discuss is patch
size. We started with the following decision : the submis-
sion requires patches of 16x16 but they seem too small
to be able to differentiate roads from other things. On the
other hand using the full image as one data sample does
not seem necessary and would result in very little training
data. Therefore we lower the patch size so that roads are
still easily recognizable as to maximize training data with
no drawback.
Sanity checks were made to approve our method, which
showed that patches of 16x16 either end with too much
data to train the model within a reasonable time or much
lower accuracy. Testing with full images as patches also
drastically lowered the accuracy of the model. We did not
have the time to grid search the optimal patch size around
96x96 however, so some further improvements might be
possible in this area.

D. Strengths and weaknesses of our model

After training our best model and adjusting the aug-
mented data to help its weaknesses, we notice that it is
able to precisely detect roads that are at an angle. This is
best shown by the following image :

Figure 5: The road in the middle is diagonal and very well recognized by our
model, proving that it is now much better at detecting these. Adding more random
rotations of each image allowed the model to handle them better.

A weakness of our model that we did not manage to fix
is parking lots and some railroad tracks. In fact, it seems
understandable that they can be classified as roads since
both are very similar. Another factor that did not help is
that some images from the train set identify roads inside
parking lots whereas some others do not, which in a sense
confuses our model. This confusion leads to very uncertain
predictions around parking lots :

Figure 6: The parking on the left of the image is badly delimited and contains
weird looking road predictions.

This could have been improved by either removing all
roads from parkings in the training set or adding them
on every parking such that we have a consistent set. The
issue with this is that we do not know if parkings should
be identified as roads or not. Also, this requires manually
modifying groudtruth images from the training set, which
would have been tedious but possible in this case. This
approach is not scalable to larger datasets. This is why
we left the images as they are. We suspect that parking
lots are the reason why our model has poor recall on our
AIcrowd submission. In fact, we got an accuracy of 93,3%
but f1 score of 87,5%

E. Limitations and potential areas for improvement

Despite the promising results obtained with the U-
Net model, there are several limitations that should be
considered. One potential limitation is the size of the
training dataset, which was augmented but still relatively
small compared to datasets used in other image segmen-
tation tasks. This may have limited the model’s ability to
generalize to new, unseen data and could be a potential
area for improvement.
Another potential limitation is the quality and diversity
of the training data. The images in the dataset were all
taken from the same geographic region and may not be
representative of the variability present in satellite images
from other regions. Additionally, the data augmentation
techniques applied may not have sufficiently diversified
the training data, leading to potential overfitting of the
model.
To address these limitations and improve the model’s
performance, one potential approach would be to gather a
larger and more diverse training dataset, potentially from
multiple geographic regions. This could potentially allow
the model to better generalize to new data and improve its
performance. Additionally, applying more advanced data
augmentation techniques, such as synthesizing new images
using GANs, could also help to increase the diversity of
the training data and improve the model’s performance.

V. SUMMARY

In this lab report, we worked on the task of road
segmentation in satellite images using an U-Net model, a
convolutional neural network known for its effectiveness
in image segmentation tasks. We first preprocessed the
dataset by applying data augmentation techniques, which
helped improve the model’s performance by increasing
the diversity of the training data. We then trained many
different variations of a U-Net model with different hy-
perparameters in order to compare them and pick the one
with the best F1 score. We trained this model using the
augmented dataset and evaluated its performance on the
test set using various metrics, including accuracy and F1
score. The model achieved an impressive F1 score of
94.5 on the test set, demonstrating its strong ability to
accurately segment roads in satellite images. In addition
to the quantitative evaluation, we also performed a detailed
error analysis to understand where the model was making
mistakes and identify potential areas for improvement.
Overall, our results indicate that the U-Net model holds
strong potential for the road segmentation task and has
the potential to greatly impact applications such as au-
tonomous vehicles and mapping services by improving
their accuracy.

REFERENCES

[1] U-Net, “U-net — Wikipedia, the free encyclopedia,” 2022,
[Online; accessed 10-December-2022]. [Online]. Available: https:
//en.wikipedia.org/wiki/U-Net

[2] J. Paul, “Segmentation of roads in aerial images.” 2019,
[Online; accessed 10-December-2022]. [Online]. Available: https:
//towardsdatascience.com/road-segmentation-727fb41c51af

[3] ashishpatel26, “Semantic-segmentation-keras-tensorflow-
example,” 2020, [Online; accessed 10-December-2022].
[Online]. Available: https://nbviewer.org/github/ashishpatel26/
Semantic-Segmentation-Keras-Tensorflow-Example/blob/main/
Areal Image segmentation with a U Net like architecture.ipynb

[4] D. S. Bhattiprolu, “Python for microscopists and other image
processing enthusiasts,” 2022, [Online; accessed 10-December-
2022]. [Online]. Available: https://github.com/bnsreenu/python for
microscopists/blob/master/228 semantic segmentation of aerial
imagery using unet/simple multi unet model.py

[5] zhixuhao, “Implementation of deep learning framework – unet,
using keras,” 2019, [Online; accessed 10-December-2022]. [Online].
Available: https://github.com/zhixuhao/unet/blob/master/model.py

https://en.wikipedia.org/wiki/U-Net
https://en.wikipedia.org/wiki/U-Net
https://towardsdatascience.com/road-segmentation-727fb41c51af
https://towardsdatascience.com/road-segmentation-727fb41c51af
https://nbviewer.org/github/ashishpatel26/Semantic-Segmentation-Keras-Tensorflow-Example/blob/main/Areal_Image_segmentation_with_a_U_Net_like_architecture.ipynb
https://nbviewer.org/github/ashishpatel26/Semantic-Segmentation-Keras-Tensorflow-Example/blob/main/Areal_Image_segmentation_with_a_U_Net_like_architecture.ipynb
https://nbviewer.org/github/ashishpatel26/Semantic-Segmentation-Keras-Tensorflow-Example/blob/main/Areal_Image_segmentation_with_a_U_Net_like_architecture.ipynb
https://github.com/bnsreenu/python_for_microscopists/blob/master/228_semantic_segmentation_of_aerial_imagery_using_unet/simple_multi_unet_model.py
https://github.com/bnsreenu/python_for_microscopists/blob/master/228_semantic_segmentation_of_aerial_imagery_using_unet/simple_multi_unet_model.py
https://github.com/bnsreenu/python_for_microscopists/blob/master/228_semantic_segmentation_of_aerial_imagery_using_unet/simple_multi_unet_model.py
https://github.com/zhixuhao/unet/blob/master/model.py

	Introduction
	Methods
	Preprocessing
	Data augmentation
	Other training set
	From images to patches

	Models
	Loss functions
	Binary cross entropy
	Soft dice loss

	Hyperparameters
	Training set size
	Patch size
	Submission threshold
	Others

	Results
	Performance

	Discussion
	Models
	Data augmentation
	Patch size
	Strengths and weaknesses of our model
	Limitations and potential areas for improvement

	Summary
	References

