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Abstract—The Higgs Boson is an elementary particle able to
explain why fundamental particles in our universe have mass.
At CERN, physicists recreate the process of discovering the
Higgs Boson in order to study it. However, estimating whether
a Higgs Boson is produced is not a trivial task due to its
instability. Machine learning algorithms are used to solve this
problem. In the context of the Higgs Boson machine learning
challenge, we developed a model based on regularized logistic
regression which is able to perform binary classification with
an accuracy of 79%. We propose to handle missing data
by substituting them with the mean of the feature vector to
which they belong; and to remove features that are correlated.
Results show that our model is generalizable as it performs
well on unknown data, and represents a good trade-off between
accuracy and complexity.

I. INTRODUCTION

The Higgs Boson is an elementary particle in the Stan-
dard Model of particle physics produced by the quantum
excitation of the Higgs field [1]. It is central in the Higgs
mechanism, which explains why gauge bosons have mass:
this mechanism is of key importance to reconcile theory
and experimental evidence, as measurements show that
bosons have masses. At CERN, where the Higgs boson
was discovered in 2013, physicists recreate the process of
discovering this elementary particle by smashing protons
into one another at high speed. To estimate whether a Higgs
boson is produced, the decay signature of the collision event
is analyzed [2]. However, this is not a trivial task as the
decay signature of a Higgs boson can look similar to that
of some other particles. For this reason, machine learning
algorithms are needed to predict whether an event is the
result of a Higgs boson or the result of something else
(binary classification task). To address this need, in 2014
the Higgs boson machine learning challenge was launched
by ATLAS. The dataset consists of 250000 samples, each
described by 30 features. Notably, variables that are mean-
ingless or cannot be computed are marked with an extreme
value of -999 [2]. In the context of this challenge, several
models have been developed over the years. However, none
of them is free from limitations. The goal of our analysis
is to find a model that represents a good trade-off between
accuracy and complexity.

II. MODELS AND METHODS

The model we developed to perform binary classification
is regularized logistic regression. The method used to find
the optimal weights is gradient descent.

The model selection process is detailed hereafter. The first
step consists of exploratory data analysis: the distribution
of features can be seen in Fig.1. The second step consists
of handling missing values, which are set to -999 in the
dataset. In our feature matrix each missing value is replaced
with the mean of the feature vector to which it belongs,
computed considering only defined values. This step is
crucial to maintain the distribution of defined values after
standardization.

Then, data cleaning and feature selection is performed.
Model selection is performed by means of backward elim-
ination, meaning that the starting model includes all the
given features, and then the least significant variables are
removed one after the other [3]. More in detail, linear cor-
relation between features is checked using cross-correlation
(see Fig.2). Then, non-linear relationships between features
are checked using Spearman correlation. Features that are
linearly correlated are removed in order to obtain a simpler
model: 13 features are eliminated according to this criterion.
Finally, polynomial expansion is performed for each of
the remaining features up to degree 3. Then, features are
standardized, meaning that they are rescaled such that they
have the properties of a standard normal distribution with
a mean of zero and a standard deviation of one. This step
is necessary for many machine learning algorithms to work
properly (e.g., linear regression, logistic regression, ...) [4].
Another reason why standardization is performed in the
context of this analysis is that it enables a faster convergence
of gradient descent.

The next step consists of choosing the function that better
approximates the distribution of the data. As previously
mentioned, our choice is logistic regression as this algorithm
performs well in binary classification tasks. Then, a ridge
regularization term is added, as it increases the stability
of the model. Model parameters are optimized. Finally, the
performance of the prediction model is assessed by means
of 8 fold cross validation (loss and accuracy are computed),
using 1000 training samples.

III. RESULTS

As shown in Fig.1, many features have undefined values
(marked with a value of -999): more in detail, there are 7
features with 70.5% of undefined values and 4 features with
a percentage between 15% and 40%.

In addition, features differ significantly in terms of mean
and standard deviation. For example, the minimum mean



Figure 1. Features distributions. Undefined values are set to -999.

is -0.796 for the feature DER prodeta jet jet; whereas
the maximum mean is 366.297 HeV for the feature
DER mass jet jet.

As visible in Fig.2, there are clusters of correlated
features. For example, features 4,5,6,12,26,27,28 show a
correlation coefficient between 0.95 and 1.

Figure 2. Correlation heat map of the features using cross-correlation. Red
= strong correlation, white = no correlation, blue = strong anticorrelation.

The step size γ for gradient descent is set to 2 ∗ 10−6,
which is small enough to avoid divergence. This value of γ is
found by means of cross-validation using logistic regression
as a model on unprocessed data. Weights are first set to 0.

The test accuracy of several logistic regression models
resulting from 8-fold cross-validation is reported in Table I.
As we can see, handling the undefined values before stan-
dardization as described in Section II improves the accuracy
of the model. The best mean accuracy is achieved when
correlated features are removed and polynomial expansion
of degree 3 is applied to the remaining 17 features. Applying
a regularization term has both pros and cons: it decreases
the mean accuracy (from 0.733 to 0.728) and it decreases
the variance of the prediction (from 0.0395 to 0.0120).
Indeed, regularized logistic regression seems to be more
stable than logistic regression. As only with regularized
logistic regression the mean accuracy is higher than 70%

for all runs of the cross-validation, we choose to include a
ridge penalty in the final model. The value of λ = 0.278 is
found to be optimal when γ = 2 ∗ 10−6.

Raw data 0.711 +/- 0.0551
S 0.694 +/- 0.0526
NaN + S 0.714 +/- 0.0537
NaN + S + Poly 0.727 +/- 0.0441
NaN + S + Poly + Feature selection 0.733 +/- 0.0395
NaN + S + Poly + Feature selection + Reg 0.728 +/- 0.0120

Table I
TEST ACCURACY OF LOGISTIC REGRESSION OVER 8 FOLD

CROSS-VALIDATION (γ = 2 ∗ 10−6). S = STANDARDIZATION, NAN =
MISSING VALUES HANDLING, POLY = POLYNOMIAL EXPANSION

(d = 3), REG = REGULARIZATION WITH RIDGE PENALTY (λ = 0.278)

Finally, we found that the combination of γ = 0.02 and
λ = 8.1 ∗ 10−5 gives a test accuracy of 79%, keeping the
other parameters equal and applying the feature processing
described above (standardization, handling missing values,
feature selection, polynomial expansion of degree 3). This
is our best score on the submission platform.

IV. DISCUSSION

The presented model can be used to predict whether an
event is the result of a Higgs boson or the result of something
else. Some strengths of our model lie in the choice of logistic
regression. Logistic regression is easy to implement, easy
to interpret and very efficient to train. Moreover, it makes
no assumptions about distributions of classes in feature
space. It is very fast at classifying unknown records and not
inclined to over-fitting. It handles well extreme values, as the
linear function is mapped into a sigmoid function. However,
logistic regression has also limitations, as it assumes a
linear relationship between the dependent variable and the
independent variables, which is often not the case in real-
word scenarios, and it constructs linear boundaries [5].
Another limitation of our model lies in the fact that its
accuracy is 79%, meaning that on average 20% of the data
are misclassified. Other strengths of our model are that it
standardizes features, meaning that model performance is
not affected by the different values range of features, and that
it is able to efficiently handle undefined values. Moreover,
the model complexity represents a good trade-off between
bias and variance. Notably, adding the ridge regularization
term to the loss enables a low variance and a good accuracy.
Another advantage of the regularization term is that it avoids
the model to diverge when data are linearly separable.

V. SUMMARY

A new model for binary classification in the context of the
Higgs boson machine learning challenge is here presented.
The model is based on regularized logistic regression, which
makes it simple and efficient, and uses a new approach to
handle missing data. Notably, this new model enables a good
trade-off between accuracy and complexity.
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